Telecommunications Microwave

Microwave Fundamentals

Courseware Sample

85756-F0

Order no.: 85756-00

Second Edition

Revision level: 03/2015

By the staff of Festo Didactic

© Festo Didactic Ltée/Ltd, Quebec, Canada 2008, 2009

Internet: www.festo-didactic.com

e-mail: did@de.festo.com

Printed in Canada
All rights reserved
ISBN 978-2-89640-345-5 (Printed version)
ISBN 978-2-89747-377-8 (CD-ROM)
Legal Deposit – Bibliothèque et Archives nationales du Québec, 2009
Legal Deposit – Library and Archives Canada, 2009

The purchaser shall receive a single right of use which is non-exclusive, non-time-limited and limited geographically to use at the purchaser's site/location as follows.

The purchaser shall be entitled to use the work to train his/her staff at the purchaser's site/location and shall also be entitled to use parts of the copyright material as the basis for the production of his/her own training documentation for the training of his/her staff at the purchaser's site/location with acknowledgement of source and to make copies for this purpose. In the case of schools/technical colleges, training centers, and universities, the right of use shall also include use by school and college students and trainees at the purchaser's site/location for teaching purposes.

The right of use shall in all cases exclude the right to publish the copyright material or to make this available for use on intranet, Internet and LMS platforms and databases such as Moodle, which allow access by a wide variety of users, including those outside of the purchaser's site/location.

Entitlement to other rights relating to reproductions, copies, adaptations, translations, microfilming and transfer to and storage and processing in electronic systems, no matter whether in whole or in part, shall require the prior consent of Festo Didactic GmbH & Co. KG.

Information in this document is subject to change without notice and does not represent a commitment on the part of Festo Didactic. The Festo materials described in this document are furnished under a license agreement or a nondisclosure agreement.

Festo Didactic recognizes product names as trademarks or registered trademarks of their respective holders.

All other trademarks are the property of their respective owners. Other trademarks and trade names may be used in this document to refer to either the entity claiming the marks and names or their products. Festo Didactic disclaims any proprietary interest in trademarks and trade names other than its own.

Safety and Common Symbols

The following safety and common symbols may be used in this manual and on the equipment:

Symbol	Description
▲ DANGER	DANGER indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.
▲ WARNING	WARNING indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
▲ CAUTION	CAUTION indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
CAUTION	CAUTION used without the <i>Caution, risk of danger</i> sign ♠, indicates a hazard with a potentially hazardous situation which, if not avoided, may result in property damage.
4	Caution, risk of electric shock
	Caution, hot surface
\triangle	Caution, risk of danger
	Caution, lifting hazard
	Caution, hand entanglement hazard
	Notice, non-ionizing radiation
	Direct current
\sim	Alternating current
\sim	Both direct and alternating current
3~	Three-phase alternating current
	Earth (ground) terminal

Safety and Common Symbols

Symbol	Description
	Protective conductor terminal
<i></i>	Frame or chassis terminal
₩	Equipotentiality
	On (supply)
\bigcirc	Off (supply)
	Equipment protected throughout by double insulation or reinforced insulation
口	In position of a bi-stable push control
	Out position of a bi-stable push control

Preface		X\
About This M	lanual	XVI
Exercise 1	Familiarization with Microwave Equipment	1
	DISCUSSION	1
	Guided propagation of microwaves	
	Basic components of the Microwave Technology Training	
	System	2
	The Gunn Oscillator	
	The Gunn Oscillator Power Supply	2
	The Variable Attenuator	3
	The Thermistor Mount	4
	Assembly of components	5
	Using the Power Meter of the LVDAM-MW software	7
	Procedure	8
	Set up and connections	
Exercise 2	Power Measurements	15
	DISCUSSION	15
	Power	
	Watt and decibel conversion	
	Power measurement techniques	
	Wheatstone bridge	18
	Bridge balancing	19
	Bridge operation	19
	Procedure	20
	Set up and connections	
	Measuring the power fed to the thermistor at equilibrium,	\
	without microwave signal injected	23
	Measuring the power fed to the thermistor at equilibrium,	
	when a microwave signal is injected	23
Exercise 3	The Gunn Oscillator	27
	DISCUSSION	27
	Introduction to Gunn oscillators	
	The Gunn effect	
	Current-voltage characteristic of a Gunn diode	
	Energy levels of n-type semiconductor materials	
	Creation of microwave oscillations	
	Natural frequency of the created oscillation	
	Turning a Gunn diode into a Gunn oscillator	

	PROCEDURE	31
	Measuring the current, power, and efficiency of the Gunn	
	Oscillator over the 0-10 V supply voltage range	31
	Plotting the current-versus-voltage curve of the Gunn	
	Oscillator	35
	Plotting the power-versus-voltage curve and the	
	efficiency-versus-voltage curve of the Gunn Oscillator	36
Exercise 4	Calibration of the Variable Attenuator	39
	DISCUSSION	39
	Attenuation	
	Insertion loss	
	Techniques used to measure attenuation and its insertion losses	
	Programs	40
	PROCEDURE	
	Measuring the maximum power fed to the load	43
	Characterizing the Variable Attenuator by plotting its attenuation-versus-blade position curve	15
	attenuation-versus-blade position curve	45
Exercise 5	Detection of Microwave Signals	51
	Discussion	51
	Introduction to crystal detectors	51
	Typical sensitivity curve of a crystal detector	51
	Voltage sensitivity	52
	Amplification of a crystal detector's output signal	52
	Measuring the tangential sensitivity	53
	PROCEDURE	54
	Measuring the maximum power of the microwave signal	54
	Determining the sensitivity curve of the crystal detector	56
	Measuring the tangential sensitivity of the Crystal	
	Detector	62
Exercise 6	Attenuation Measurements	67
	DISCUSSION	67
	The RF substitution method	67
	The RF substitution method	67 68
	The RF substitution method	67 68 68
	The RF substitution method	67 68 68

	Procedure	70
	System setup	70
	SWR Meter preliminary adjustment	72
	Measuring the attenuation provided by a microwave	
	component	73
Exercise 7	Standing Waves	77
	DISCUSSION	77
	Creation of standing waves	
	Conventional representation of standing waves	
	Frequency measurement	
	The Slotted Line	
	Microwave frequency measurements and standing wave	
	Start up procedure when using the Slotted Line and the	0 1
	Start-up procedure when using the Slotted Line and the SWR Meter of LVDAM-MW	82
	Procedure	83
	System setup	
	Preliminary adjustment of the Slotted Line and SWR Meter	85
	Measuring the guided wavelength and the microwave signal frequency	88
	Standing wave produced along the Slotted Line when the	
	waveguide is short-circuited	89
	Standing wave produced along the Slotted Line when the	
	load consists of a 6 dB attenuator and a short circuit	92
	Standing wave produced along the Slotted Line with a	
	matched load	97
Exercise 8	The Directional Coupler	103
	DISCUSSION	103
	Introduction to directional couplers	
	Construction and operation of a cross-guide directional	100
	coupler	103
	Electric and magnetic field distributions inside a	
	waveguide	105
	Orientation of the components of the magnetic field in a	
	cross-guide directional coupler	106
	Coupling factor	107
	Directivity	108
	Procedure	
	System setup	
	Setting the maximum power to 0 dBm on the Power Meter.	
	Setting the reference on the SWR Meter	
	Measuring the coupling factor of the Directional Coupler	
	Measuring the directivity of the Directional Coupler	116

© Festo Didactic 85756-00 VII

Exercise 9	Reflection Coefficient Measurements	119
	DISCUSSION	119
	Reflection coefficient	
	Power incident to and reflected by a load	120
	Return loss	120
	Percentage of the incident power absorbed by the load	121
	Measuring the reflection coefficient of a load	121
	Vectorial voltmeter method	121
	Reflectometer (dual power meter) method	121
	Reflectometer square-law method	122
	Procedure	124
	System setup	124
	Measuring the return loss and the magnitude of the	
	reflection coefficient	124
	Return loss of the thermistor mount when it is matched	
	and poorly matched	128
	Matching the Thermistor Mount	128
	Setting the reference on the SWR Meter	130
	Measuring the return loss of the matched Thermistor Moun	t132
Exercise 10	SWR Measurements	137
	Discussion	137
	Standing wave ratio (SWR)	
	SWR and magnitude of the reflection coefficient, ρ	
	Converting SWR (dimensionless number) into dB	
	SWR measurements with a Slotted Line and a SWR	
	Meter	139
	PROCEDURE	140
	Measuring the SWR when the impedance of the load is	110
	matched to the impedance of the waveguide	140
	Measuring the SWR when the load consists of an attenuator and a short circuit	111
	Decreasing the attenuation provided by the Variable	
	Attenuator	
	Measuring the SWR when the load consists of a short	140
	circuit	148
	on out	140
Exercise 11	Impedance Measurements	153
	DISCUSSION	153
	Relationship between the reflection coefficient at the load	
	and the load impedance	
	The Smith Chart	
		450
	Circles of constant resistance (R) value	150

	Determining the SWR produced by a given load	. 162 . 164
	Procedure	
	Determining the guided wavelength with the Slotted Line Measuring the load impedance by using the short-circuit minima-shift method	
	Measuring the load impedance with the Variable Attenuator	
	set for an attenuation of 5.0 dB Measuring the load impedance with the Variable Attenuator	173
	set for an attenuation of 1.5 dB	176
Exercise 12	Reactive Impedances	. 181
	Discussion	. 181
	Discontinuity	. 181
	Capacitive and inductive irises	
	The screw tuner	. 183
	Determining the reactance produced by an iris or a screw tuner in a waveguide	. 184
	Converting impedances to admittances by using the Smith Chart	. 185
	Converting admittances to impedances by using the Smith Chart	. 187
	Determining the admittance and the impedance of an iris by using the Smith Chart	
	Procedure	. 190
	Determining the location of the phase reference plane Determining the admittance and the impedance of an	. 190
	inductive iris by using a Smith Chart	
	Determining the reflection coefficient in the plane of the iris Determining the normalized total impedance and the	195
	normalized total admittance in the plane of the iris Determining the normalized admittance and the normalized	196
	impedance of the iris	198
Exercise 13	Impedance Matching	. 203
	DISCUSSION	. 203
	Reflection coefficient along a waveguide	
	Determining an impedance along a waveguide	. 203
	Determining the impedance at a given point along a	206
	waveguide (example)	∠∪0

	Impedance matching	208
	Impedance matching of a load (example)	209
	Slide-Screw Tuner	211
	Procedure	212
	Determining the location of the phase reference plane	212
	Measuring the impedance of an unmatched load	216
	Adjusting the slide-screw tuner to match the load	219
	Measuring the SWR of the matched load	222
	Determining the impedance and the location of the	
	matching device (Slide-Screw Tuner) required to match	
	the load	224
Exercise 14	Antennas and Propagation	229
EXCITION 1-1		
	Discussion	
	Propagation in free space	
	Propagation loss	
	Isotropic radiators	
	Measuring the attenuation	
	Transmission and reception of signals	
	Radiation pattern	
	Plotting a radiation pattern	
	Methods used to measure the gain of an antenna	
	Reference-antenna gain measurement method	
	Identical-antenna gain measurement method	234
	Procedure	235
	Measuring the received signal level for various distances	
	between the transmitting and receiving antennas	235
	Measuring the gain of an antenna	240
	Plotting and comparing the radiation patterns of two	
	different antennas	
	Plotting the radiation pattern of a horn antenna	244
	Plotting the radiation pattern of a long triangular lens	
	antenna	247
Exercise 15	Microwave Optics	255
	DISCUSSION	255
	Phenomena usually encountered in optics	
	Index of refraction	
	Reflection coefficient	
	Coefficient of transmission	
	Snell's Law	
	Critical angle	_
	Lenses	
	Parabolic antennas	

	Procedure	260
	Interference caused by a metal plate	
	Observing the effect that a change in the plate orientation	
	has on the level of the received signal	264
	With the metal plate	
	With the dielectric plate	
	Comparing the signal levels received with the two plates	
Exercise 16	Microwave Transmission Demonstration (Requires	
	Optional Equipment)	. 269
	DISCUSSION	. 269
	Microwave transmission demonstration	269
	Procedure	272
	PROCEDURE	
	Observations related to the propagation of microwave	. 212
		277
	signals with and without obstacles Observations related to the polarization of the wave	
	Transmission of an audio signal	
	Transmission of an addio signal	. 202
Exercise 17	PIN Diodes	. 287
	DISCUSSION	. 287
	Introduction	
	Operation of a PIN diode when forward-biased	
	Typical resistance-versus-bias current response of a	
	forward-biased PIN diode	. 288
	Equivalent RF circuit of a forward-biased PIN diode	
	Operation of a PIN diode when reverse-biased	
	Attenuation of a reverse-biased PIN diode as a function of	
	frequency	. 292
	Applications of PIN diodes	
	• •	
	PROCEDURE	
	Characterization of the PIN Diode	
	PIN diode used as a microwave switch	. 302
	Attenuation-versus-frequency curve of the PIN diode	
	(optional section)	. 306
Exercise 18	Wireless Video Transmission System (Requires Optional	
	Equipment)	. 313
	DISCUSSION	. 313
	Introduction	. 313
	Constructive and destructive interference: multipath	
	interference	. 315

	PROCEDURE	315
	Characterization of the PIN diode	315
	Constructive and destructive interference	319
	E-plane attenuation	
	<u> </u>	
Evereice 10	Hybrid Too	225
Exercise 19	Hybrid Tees	325
	DISCUSSION	325
	Introduction to waveguide tees	325
	The hybrid (magic) tee	326
	Using hybrid tees to split signals	
	Theoretical versus actual attenuation and isolation	
	Using hybrid tees to couple signals	
	Applications	
	PROCEDURE	
	System setup	
	Setting the maximum power to 0 dBm	
	Setting the maximum power to 0 doin	
	Attenuation between the H-plane arm and lateral arm 1	
	•	
	Attenuation between the H-plane arm and lateral arm 2	
	Attenuation between the E-plane arm and lateral arm 1	
	Attenuation between the E-plane arm and lateral arm 2	
	Measuring the isolation between the E- and H-plane arms	
	of the hybrid tee	343
	Isolation between the E-plane arm and the H-plane arm	0.40
	(E→H)	343
	Isolation between the H-plane arm and the E-plane arm	0.45
	(H→E)	
	180° phase difference verification	346
	Signal propagation with short-circuit termination at lateral	0.40
	port 1	346
	Signal propagation with short-circuit termination at lateral	0.40
	port 2	
	180° phase difference verification	
	Calculating the reflection loss from the measured SWR	351
A	Fundament Hellingthan Obert	0.5.7
Appendix A	Equipment Utilization Chart	357
Annondiy D	Classary of New Torms	250
Appendix B	Glossary of New Terms	ანყ
Annendiy C	Common Symbols	361
Thheriniy C	Common Cymbols	501
Annendiy D	Module Front Panels	367
, wpolidix D	modulo i lont i unionimimimimimimimimimimimimimimimimimim	557

Appendix E	Answers to Procedure Step Questions	369
	Exercise 1	
	Exercise 2	369
	Exercise 3	370
	Exercise 4	371
	Exercise 5	371
	Exercise 6	372
	Exercise 7	373
	Exercise 8	377
	Exercise 9	377
	Exercise 10	378
	Exercise 11	379
	Exercise 12	380
	Exercise 13	381
	Exercise 14	
	Exercise 15	
	Exercise 16	
	Exercise 17	
	Exercise 18	
	Exercise 19	393
Appendix F	Answers to Review Questions	397
	Exercise 1	397
	Exercise 2	397
	Exercise 3	398
	Exercise 4	399
	Exercise 5	399
	Exercise 6	
	Exercise 7	
	Exercise 8	
	Exercise 9	
	Exercise 10	
	Exercise 11	
	Exercise 12	
	Exercise 13	
	Exercise 14	
	Exercise 15	
	Exercise 16	
	Exercise 17	
	Exercise 18	
	Exercise 19	412
Appendix G	Conversion Table	415
Index of New	Terms	417
Ribliography		419
		419

Preface

Although the microwave field is relatively new, microwaves are now a part of our everyday life. Almost all of us have watched television programs transmitted across continents and oceans via microwave satellite links, cooked meals in a microwave oven, or been in an airplane using microwave radar to help it land in conditions of poor visibility. None of these things were possible only a few years ago, and even today, the full potential of microwaves has not been realized.

The first use of microwaves was in radar applications developed during World War II. Since then, interest in microwave technology has grown rapidly. Microwaves are now used in such applications as well as in air traffic control at airports throughout the world, navigational aids at sea and on land, and missile-tracking systems to name just a few. Microwaves have helped to increase the useable radio-frequency spectrum, and today, they play an important role in telecommunications. Earth-orbiting satellites are able to relay vast quantities of information over long distances in very short periods of time. Satellites have done much to "shrink" the world, making it possible to communicate with remote areas that are too isolated for conventional communications technology.

Microwaves offer so many varied applications, such as the microwave oven, which are just not possible with lower frequencies that one may wonder what it is about microwaves that makes them so different from other signals. The answer lies in the wavelength of signals at microwave frequencies. With wavelengths from about 0.1 to 100 cm, the microwave signal's wavelength is comparable to the size of the circuit components. Because of the shortness of the wavelength, the propagation time of electrical quantities is comparable to the period of the signal, and many phenomena can, therefore, occur in a relatively short distance. This makes it easy to observe such things as standing waves, and to measure the maxima and minima of the electric fields using compact devices with probes. Unlike lower-frequency signals, microwaves are able to penetrate the ionized layers of the ionosphere with a minimum of diffraction and reach satellites orbiting at heights equivalent to three times the Earth's diameter.

Progress in the field of microwaves has only been possible since higher-frequency microwave sources have been available. In the beginning, these sources were made from magnetrons and klystrons. Today, solid-state devices, such as the Gunn Effect oscillator, are available. With the high-frequency signals from these sources, it is possible to use very large bandwidths to transmit vast quantities of information.

This manual, Microwave Fundamentals, introduces students to the principles of microwave signals and their propagation; the construction and operation of microwave components; and the techniques used to measure power attenuation, SWR, and impedance.

All measurements are performed by using the Windows®-based Data Acquisition and Management for Microwave system (LVDAM-MW®). This software includes a power meter, a standing-wave ratio (SWR) meter, and an oscilloscope. The software allows the user to display, save, and print data and graphs. A Smith Chart is included to permit the measurements of the line parameters. The software is built around the Data Acquisition Interface (DAI), Model 9508, that performs 12-bit A/D acquisition on four channels.

The equipment required to perform the exercises in this manual is listed in Appendix A.

Preface

Acknowledgments

We thank Mr. Gilles Ratté, MScA, of Comlab Inc. for his special contribution to this text. We would also like to thank the following people from Laval University, Québec, for their participation in the development of the Microwave Technology instructional program: John Ahern, MScA; Gilles Y. Delisle, PhD; Michel Lecours, PhD; Marcel Pelletier, PhD.

We invite readers of this manual to send us their tips, feedback, and suggestions for improving the book.

Please send these to did@de.festo.com.

The authors and Festo Didactic look forward to your comments.

About This Manual

The exercises in this manual provide a systematic introduction to the very wide microwave field. When students are first confronted with the components and devices of a microwave system, they are often disconcerted by their physical difference compared to those that they are familiar with. Therefore, it is very important not to overwhelm the students with a mass of new concepts, components, and techniques.

The approach used in this manual is simple and progressive. It uses a recognized pedagogic approach that introduces concepts, components, and measuring devices one at a time in a logical order. Each element introduced adds to the base on which the next element will be introduced. Thus, in this introductory manual, we introduce: fundamental quantities such as power, impedance, attenuation, standing waves, and reflection coefficients; components and measuring devices such as fixed and variable attenuators, crystal detectors, directional couplers, loads or terminations, reactive irises, SWR meters, and power meters; and techniques for measuring power, attenuation, standing-wave ratios, reflection coefficients, and impedance. Other associated topics such as impedance matching, antennas and microwave propagation, and microwave optics are also introduced.

Exercises 1 to 5 introduce the students to many of the basic components of the Microwave Technology Training System with LVDAM-MW, Model 8091, and some of the techniques which will be used throughout the manual. Exercise 6 familiarizes the student with the RF substitution method of measuring the attenuation caused by a microwave component. Exercise 7 introduces reflected and standing waves. The slotted line is introduced as a useful tool for studying the parameters of these phenomena. Exercise 8 introduces the directional coupler.

Exercise 9 covers the reflection coefficient and the return loss. Exercise 10 further familiarizes the students with standing waves and the measurement of standing-wave ratios.

Exercises 11 to 13 introduce students to the Smith Chart. The students learn how to measure reactive impedances. They learn how to perform impedance matching to reduce the reflection produced by mismatched load to a minimum.

Exercises 14 and 15 present more advanced concepts. In Exercise 14, the students learn how to measure the gain of a horn antenna, and how to plot radiation patterns. Exercise 15 introduces the students to microwave optics.

Exercise 16 teaches how to implement a simple demonstration to show how a microwave signal can be used to carry information along a line of sight from one point to another. Optional equipment is required (indicated in Appendix A).

Exercises 17 and 18 introduce students to the construction and operation of PIN diodes. The students learn how PIN diodes are used in microwave applications such as microwave switching, variable attenuation, amplitude modulation and leveling, and wireless communication systems. The students can implement and test a wireless video transmission system that uses a PIN diode as a microwave AM modulator. For this demonstration, option equipment is required (indicated in Appendix A).

© Festo Didactic 85756-00 XVII

About This Manual

Exercise 19 explains the operation of hybrid (magic) tees and how they can split a microwave signal into two even signals, or couple two microwave signals into a single signal. Typical applications of hybrid tees are described.

Each exercise is designed as a small instructional segment. Principles and concepts are presented first. Then, hands-on procedures enhance the written material to involve and better acquaint the students with the material being covered. A five-question review is presented at the end of each exercise. These questions allow the student to verify that the material has been well assimilated.

Safety considerations

Safety symbols that may be used in this manual and on the equipment are listed in the Safety Symbols table at the beginning of the manual.

Safety procedures related to the tasks that you will be asked to perform are indicated in each exercise.

Make sure that you are wearing appropriate protective equipment when performing the tasks. You should never perform a task if you have any reason to think that a manipulation could be dangerous for you or your teammates.

Safety with RF Fields

When studying Microwave Systems, it is very important to develop good safety habits. Although microwaves are invisible, they can be dangerous at high levels or for long exposure times. The most important safety rule when working with microwave equipment is to avoid exposure to dangerous radiation levels.

The radiation levels in the 8091 Microwave Technology Training System are too low to be dangerous because it uses the Gunn Oscillator, Model 9510, which is a low-power source of microwave signal. The maximum power level of the Gunn Oscillator at a frequency of 10 GHz, which varies from one unit to another, ranges between 10 and 25 mW. In the worst case, i.e. at the aperture of the waveguide where the maximum power level is 25 mW, the maximum power density produced by the Microwave Technology Training System is approximately 3.0 mW/cm². This low power density allows safe operation in a classroom laboratory.

In order to develop good safety habits, you should, whenever possible, remove the power from the Gunn Oscillator before placing yourself in front of the transmitting antenna. Your instructor may have additional safety directives for this system.

For your safety, do not look directly into the waveguides or Horn Antennas while power is being supplied to the Gunn Oscillator.

About This Manual

Detailed information on how to set up and use the instruments of the LVDAM-MW software can be found in the User Guide "Microwave Data Acquisition and Management", Model 85756-E. Additional information on how to use these instruments can be found in the Help section of this software, accessible from the software main window. Information on the instruments used to control or monitor the PIN Diode and the Frequency Meter of the optional Voltage Controlled RF Oscillator (VCO), Model 9511, are provided in the Parameter Settings section of the Help.

Systems of units

Units are expressed using the International System of Units (SI) followed by the units expressed in the U.S. customary system of units (between parentheses).

© Festo Didactic 85756-00 XIX

Sample Exercise
Extracted from
Student Manual

Standing Waves

EXERCISE OBJECTIVE

When you have completed this exercise, you will know how standing waves are created in waveguides. You will be able to perform microwave frequency measurements and standing wave measurements with the Slotted Line and the SWR Meter of LVDAM-MW.

DISCUSSION OUTLINE

The Discussion of this exercise covers the following points:

- Creation of standing waves
- Conventional representation of standing waves
- Frequency measurement
- The Slotted Line
- Microwave frequency measurements and standing wave measurements
- Start-up procedure when using the Slotted Line and the SWR Meter of LVDAM-MW

DISCUSSION

Creation of standing waves

When a sinusoidal microwave source is connected to a waveguide, sinusoidal waves of voltage and current propagate along it.

In fact, we could also say that both an electric field wave and a magnetic field wave propagate inside the waveguide. Considering voltages and currents instead of electric and magnetic fields is simply a different way of viewing things. The voltage is present between the top and the bottom of the waveguide, whereas the current flows in the side walls. Throughout this exercise, we will deal with voltages and currents to facilitate the understanding.

The amplitude of the voltage and the current depend on the **characteristic impedance** of the waveguide and on the impedance of the terminating load.

When the impedance of the load is equal to the characteristic impedance of the waveguide, the load continually absorbs all the received energy. No energy is reflected back toward the source. The waves travel only from the source to the load.

Conversely, when the impedance of the load is not equal to the characteristic impedance of the waveguide, not all the received energy is absorbed by the load. Instead, part of it is reflected back toward the source.

Figure 36, for example, shows the waves traveling along a waveguide when the impedance of the load is not equal to the characteristic impedance of the waveguide.

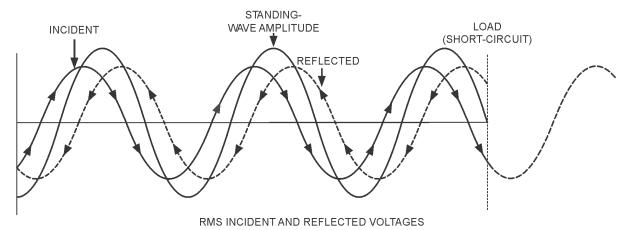


Figure 36. Creation of a standing wave along a short-circuited waveguide.

In this example, the load is in the short-circuit condition:

- the incident wave is completely reflected at the load end.
- the reflected and incident waves travel through each other, but in opposite directions, thereby combining vectorially.

This results in the creation of a standing wave along the waveguide. The standing wave is the sum of the instantaneous values of the incident and reflected waves at each point all along the line. This wave does not move or travel along the line, hence the term "standing".

Conventional representation of standing waves

Even if the voltage or current of standing waves continually changes polarity with time, the conventional way of representing these waves is with their negative and positive half-cycles pointing upward.

Figure 37 shows the conventional representation of a standing wave of voltage along a short-circuited waveguide.

- The points where the voltage is minimal are called minima, or nodes.
- The points where the voltage is maximal are called maxima, or loops.

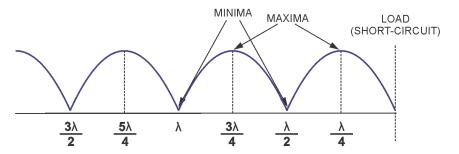


Figure 37. Conventional representation of a standing wave of voltage along a short-circuited waveguide.

The amplitude of the minima and maxima is determined by the amplitude of the reflected wave. The amplitude of the reflected wave is determined by the nature of the load.

When the load is a short circuit or an open circuit, the amplitude of the reflected wave is maximal. In fact, the amplitude of the maxima is theoretically equal to twice the amplitude of the incident wave, while the amplitude of the minima is null (or practically zero).

Frequency measurement

When examining Figure 37, the statements below can be inferred.

- At the load end of the waveguide, a minimum invariably occurs.
- Minima also occur at every even multiple of $\lambda_g/4$ from the load end (where λ_g is the wavelength of the propagating wave in the waveguide.)
- Maxima occur at every odd multiple of $\lambda_a/4$ from the load end.

Figure 37 allows you to determine the frequency of a microwave signal propagating in a short-circuited waveguide:

1. Measure the distance d between two successive minima.

(Since minima are usually more sharply defined than maxima, measuring the distance between minima provides more accurate results. The presence of large reflections is also advantageous. Terminating the waveguide by a short-circuited load provides large reflection. A matched load could not be used as there would be no standing wave in this case.)

- 2. Multiply the measured distance by 2 to obtain the wavelength of the guided signal, λ_g .
- 3. Calculate the frequency of the guided signal, f, using the following equation:

$$f = c\sqrt{\left(\frac{1}{\lambda_g}\right)^2 + \left(\frac{1}{2a}\right)^2} \tag{9}$$

where f is the frequency of the guided signal (Hz).

c is the velocity of propagation of the signal in free space $(3.0 \cdot 108 \text{ m/s})$.

 λ_a is the wavelength of the guided signal (m).

 \ddot{a} is the width of the waveguide (m).

The Slotted Line

Figure 38 and Figure 34 show the Slotted Line, Model 9520. This device can be used to measure the distance between the minima and the maxima of a standing wave.

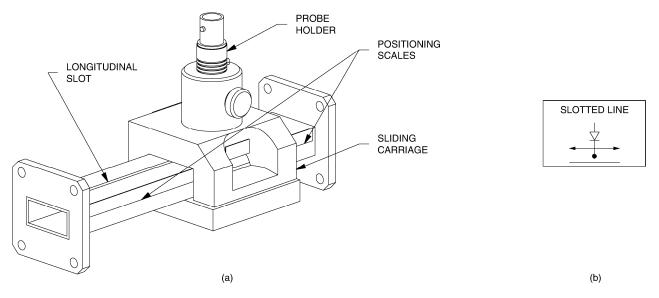


Figure 38. The Slotted Line and its symbolic representation.

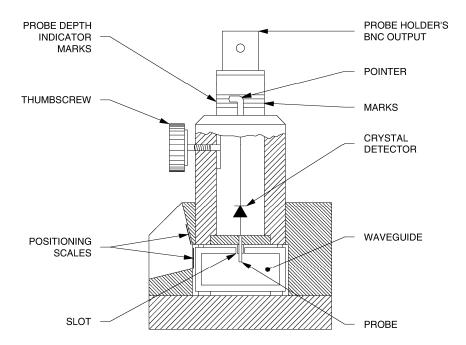


Figure 39. Cut-away view of the Slotted Line.

The Slotted Line consists of a low-loss waveguide section with a narrow, longitudinal slot in the top wall, as Figure 38 shows. A sliding carriage, containing a probe connected to a crystal detector, can be moved along the waveguide.

The probe is inserted into the waveguide to sense the electric field, as Figure 34 shows. This causes a microwave signal to be induced at the probe output. The crystal detector detects this signal and produces a proportional dc voltage. This voltage is available at the BNC output of the probe holder.

A thumbscrew allows you to adjust the depth of the probe and, therefore, the magnitude of the dc voltage at the BNC output. The marks and the pointer provide an indication of the depth of the probe.

The voltage produced at the BNC output of the Slotted Line decreases as the probe is withdrawn from the waveguide; conversely, the voltage increases as the depth of penetration of the probe is increased.

Microwave frequency measurements and standing wave measurements

The Slotted Line can be used with the SWR Meter of LVDAM-MW to perform microwave frequency measurements and standing wave measurements.

To do this, the Slotted Line is connected to the input of the Data Acquisition Interface (DAI) that is dedicated to the SWR Meter: MULTI-FUNCTION INPUT 3. This connection is usually made via the 60 dB Amplifier, Model 9593, to obtain the maximum dynamic range.

The SWR Meter is set to read power. Its power reading is directly related to the dc voltage at the Slotted Line output and, therefore, to the magnitude of the electric field in the waveguide.

When the carriage is moved along the waveguide, the position of the probe changes, causing the dc voltage produced by the crystal detector to change as a function of the variation in magnitude of the electric field along the waveguide.

Two positioning scales on the waveguide and the carriage indicate the location of the carriage. This allows you to locate the minima and the maxima in the standing wave produced by various loads, and to measure the wavelength and the frequency of the microwave signal in the waveguide.

The measurements made with a slotted line are limited by the scale graduations. The accuracy of measurement decreases as the frequency of the guided signal is increased.

Start-up procedure when using the Slotted Line and the SWR Meter of LVDAM-MW

Before using the Slotted Line and the SWR Meter, the following start up procedure must be performed. This procedure allows you to obtain the maximum dynamic range on the SWR Meter, while operating the crystal detector of the Slotted Line in its square-law region to obtain valid SWR Meter readings.

- The microwave signal injected into circuit is amplitude modulated by a 1 kHz square wave, provided by the Gunn Oscillator Power Supply. The microwave signal is then attenuated in order for the crystal detector of the Slotted Line to operate in its square-law region and the SWR Meter to provide valid readings.
- The Slotted Line's probe is located close to the maximum nearest the load in order for the Slotted Line output voltage to be maximal. This voltage is applied to MULTI-FUNCTION INPUT 3 of the DAI (input dedicated to the SWR Meter of LVDAM-MW).
- 3. The depth of the Slotted Line's probe is set to the initial default position of 1/3 of maximum.
- 4. With the minimum sensitivity (0 dB gain) on Input 3, the frequency of the SWR Meter's amplifier is tuned to obtain the maximum signal level on the SWR Meter.
- 5. The Slotted Line's probe depth is then adjusted so that the maximum signal level indicated by the SWR Meter is between 70 and 90% of full scale.
- 6. The Slotted Line's probe is accurately positioned over the maximum, and the probe depth is fine-tuned, if necessary, to obtain the maximum signal level on the SWR Meter.
- 7. The reference level (0.0 dB) is set on the SWR Meter.

Particular attention must be paid to the adjustment of the probe depth inside the Slotted Line. If the probe penetrates too deep into the Slotted Line, the field distribution can be distorted, especially when the SWR is high. Moreover, the probe's crystal detector is then more likely to operate outside of its square-law region, causing the measurements to be erroneous.

To obtain a good accuracy of measurement, the central frequency of the SWR Meter must be readjusted whenever the microwave circuit is modified or used for a prolonged period of time, as the central frequency drifts over time. The drift in the central frequency of the SWR Meter is due, among other things, to variations in ambient temperature and equipment temperature.

Similarly, the SWR Meter's reference may vary slightly over time. Small drifts are acceptable. However, it is recommended that you verify the reference from time to time and readjust it to 0.0 dB, to maintain a good accuracy of measurement.

PROCEDURE OUTLINE

The Procedure is divided into the following sections:

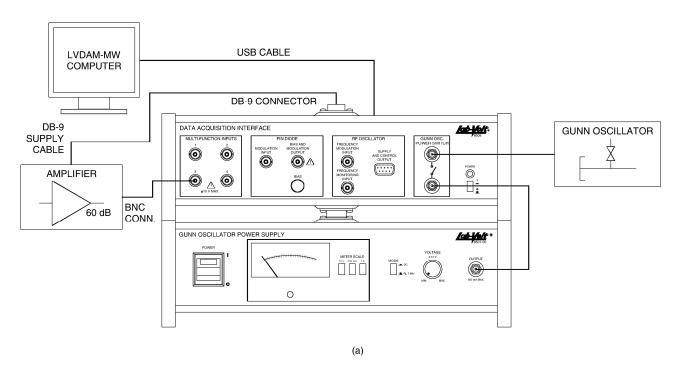
- System setup Preliminary adjustment of the Slotted Line and SWR Meter.
- Measuring the guided wavelength and the microwave signal frequency Standing wave produced along the Slotted Line when the waveguide is short-circuited.
- Standing wave produced along the Slotted Line when the load consists of a 6 dB attenuator and a short circuit
- Standing wave produced along the Slotted Line with a matched load

PROCEDURE

System setup

In this exercise, you will measure the guided wavelength and the frequency of a microwave signal, using the Slotted Line and the SWR Meter.

You will then plot the standing-wave patterns for a short circuit, an attenuator and short-circuit load, and a matched load.



For detailed information on how to use the SWR Meter of LVDAM-MW to perform SWR measurements, please refer to Section 3 of the User Guide "Microwave Data Acquisition and Management", part number 85756-E.

 Make sure that all power switches are in the O (off) position. Set up the modules and assemble the microwave components as shown in Figure 40.

The Slotted Line must be connected, via the 60 dB Amplifier, to the analog input of the Data Acquisition Interface (DAI) that is dedicated to the SWR Meter of LVDAM-MW: MULTI-FUNCTION INPUT 3.

The supply cable of the 60 dB Amplifier must be connected to the DB-9 female connector on the top of the Data Acquisition Interface.

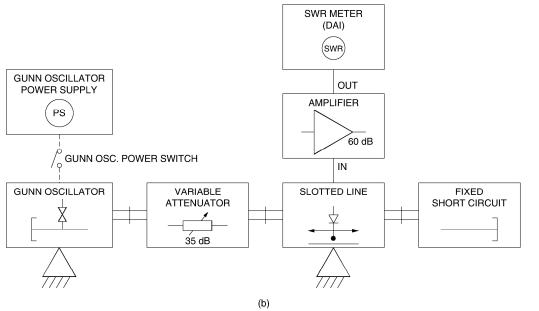


Figure 40. Computer and module arrangement (showing electrical connections to microwave components), and microwave setup.

2. Referring to the attenuation-versus-blade position curve (or the corresponding Data Table) of the Variable Attenuator obtained in Exercise 4, determine the attenuator blade's position required for this attenuator to provide an attenuation of 20 dB approximately.

Set the Variable Attenuator's blade to this position, which will limit the microwave signal incident to the Slotted Line's crystal detector to make it operate in its square-law region.

Attenuator blade's position = mm

3. Make the following settings on the Gunn Oscillator Power Supply:

VOLTAGE	MIN.
MODE	1 kHz
METER SCALE	10 V

4. Turn on the Gunn Oscillator Power Supply and the Data Acquisition Interface (DAI) by setting their POWER switch to the "I" (ON) position.

Set the Gunn Oscillator supply voltage to 8.5 V. Wait for about 5 minutes to allow the modules to warm up.

Preliminary adjustment of the Slotted Line and SWR Meter

5. Move the probe of the Slotted Line along the waveguide and set it over the 45 mm position. (The 45 mm mark on the waveguide scale intersects the rightmost ("0") mark on the carriage scale, as Figure 41 shows).

The 45 mm position approximately corresponds to the location of the standing wave maximum nearest the load.

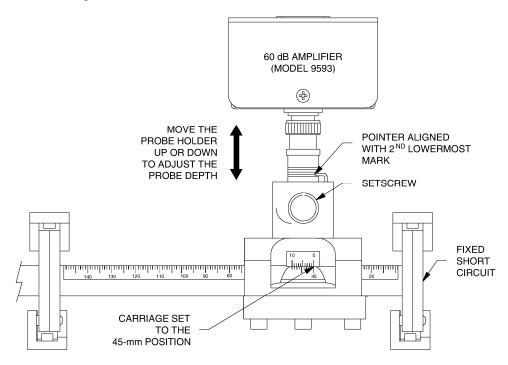


Figure 41. Locating the Slotted Line's probe over the 45 mm position and adjusting the probe's depth to 1/3 of maximum (pointer aligned with the second lowermost mark).

6. On the Slotted Line, loosen the thumbscrew of the sliding carriage and partially withdraw the probe holder (by gently pulling up on the 60 dB Amplifier connected to the probe holder).

Adjust the depth of the Slotted Line's probe to approximately 1/3 of maximum (the Slotted Line's pointer must be aligned with the second lowermost mark approximately, as Figure 41 shows); then tighten the thumbscrew.

Particular attention must be paid to the adjustment of the probe depth inside the Slotted Line. If the probe penetrates too deep into the Slotted Line, the field distribution can be distorted, especially when the SWR is high. Moreover, the probe's crystal detector is then more likely to operate outside of its square-law region, causing the measurements to be erroneous.

On the host computer, start the LVDAM-MW software. In the Application Selection window, make sure the Work in stand-alone box is unchecked, and click OK.

In the Settings panel of LVDAM-MW, make the following settings:

Gunn Oscillator/VCO Power	.ON
Function Input 3	.SWR Meter
Input 3 Gain	.0 dB
60 dB Ampli on Input 3	.ON

- 8. In LVDAM-MW, start the SWR Meter and set it to display decibels (dB).
- 9. Tune the frequency of the SWR Meter's amplifier: using the cursor of the SWR Meter, scan through the frequency tuning range of this meter (from 900 to 1100 Hz) to find the frequency at which the Signal Level (indicated as a percentage below the horizontal indicator bar of the meter) is maximum.
 - a) If the maximum signal level obtained on the SWR Meter is between 70 and 90% of full scale and the horizontal indicator bar stays green, the equipment is properly adjusted. Go immediately to step 10.

To obtain the maximum dynamic range of measurement on the SWR Meter (once its amplifier has been tuned), a maximum level between 70 and 90% on the SWR Meter with Input 3 Gain set to 0 dB is ideal.

b) If the maximum signal level obtained on the SWR Meter is between 10% and 70% of full scale, loosen the thumbscrew of the Slotted Line and very slightly readjust the depth of its probe so that the maximum signal level indicated by the SWR Meter is between 70 and 90% of full scale (and the green bar stays green) once the thumbscrew of the Slotted Line has been re-tightened (the tightening of the thumbscrew will cause the signal level to vary slightly).

Make sure not to insert the probe too deep inside the Slotted Line, otherwise the measurements may be erroneous. Instead slightly readjust the attenuation provided by the Variable Attenuator if the maximum reachable Signal Level stays below 70% of full scale, until this signal is within 70 and 90% of full scale.

The adjustment process may be tedious at first, since a small change in probe depth results in a significant change in the SWR Meter's signal level, however it will become easier with practice.

- c) If you are unable to tune the SWR Meter's amplifier because the maximum signal level exceeds the measurement scale (the horizontal indicator bar of the meter turns to red), loosen the thumbscrew of the Slotted Line. Readjust the depth of the Slotted Line's probe in order to obtain a significant reading on the SWR Meter (a signal level of, for example, about 25% of full scale, once the thumbscrew of the Slotted Line has been re-tightened since its tightening will cause the signal level to change slightly). Then, tune the frequency of the SWR Meter to obtain the maximum signal level on this meter. If this level is not between 70 and 90% of full scale, very slightly readjust the depth of the Slotted Line's probe so that the maximum signal level indicated by the SWR Meter is between 70 and 90% of full scale (and the green bar never turns from green to red) once the thumbscrew of the Slotted Line has been re-tightened.
- d) If the maximum signal level stays null or too low (below 10% of full scale with a blue indicator bar or no bar displayed) when trying to tune the SWR Meter's amplifier, slightly decrease the attenuation produced by the Variable Attenuator in order to obtain a significant level on the SWR Meter (a signal level of, for example, about 25% of full scale). Then, tune the meter frequency in order to obtain the maximum signal level on this meter. If the maximum signal level is not between 70 and 90% of full scale, slightly readjust the Variable Attenuator for the signal to be within this range.

The voltage produced by the Slotted Line decreases as the probe is withdrawn from the waveguide; conversely, the voltage increases as the depth of penetration of the probe is increased. The probe needs to be partially withdrawn from the Slotted Line's waveguide to obtain valid measurements on the SWR Meter and a good dynamic range. The probe must not be fully inserted into the Slotted Line's waveguide, otherwise its crystal detector may not operate in the square-law region, causing the SWR Meter readings to be erroneous.

10. Very slightly move the probe of the Slotted Line around the 45 mm position on the graduated waveguide, while observing the Signal Level on the SWR Meter; locate the probe over the maximum (if not already there) to obtain the maximum Signal Level on the SWR Meter.

If this causes the Signal Level to become lower than 70% or higher than 90% of full scale, very slightly readjust the depth of the Slotted Line's probe to bring the Signal Level back to 70-90% of full scale, with a green bar that never turns to red, when the probe is at the maximum.

11. Click on the REFERENCE button of the SWR Meter to set the reference level to 0.0 dB.

Measuring the guided wavelength and the microwave signal frequency

- **12.** Move the Slotted Line's probe along the waveguide to locate the minima and the maxima. Record the position of each of them in Table 5. Do not modify any equipment setting, except Gain Input 3 when necessary.
 - To locate the maxima, set Gain Input 3 to 0 dB and find the probe locations for which the signal level is maximal on the SWR Meter.
 - To locate the minima, set Gain Input 3 to 20 dB and then 40 dB to find the probe locations for which the signal level is minimum on the SWR Meter - this level will be approximately null, causing jerky and small irregular moves of the SWR Meter's indicator bar in the blue (lowest) range area.

When the Slotted Line's probe is at a minimum and the indicator bar of the SWR Meter turns to blue, the indicated level is very low and fluctuates continuously. In this case, take the approximate meter value, as it is not possible to perform an accurate measurement.

Table 5. Location of minima and maxima when the load consists of a short circuit.

Minimum	Distance from the load (mm)	Maximum	Distance from the load (mm)
$m_{1(nearestfromload)}$		$M_{1(nearestfromload)}$	
m_2		M_2	
m_3		M_3	
m_4		M_4	
m_5		M_5	-

13.	Based	on	the	data	recorded	in	Table 5,	evaluate	the	distance,	d,	between
	two suc	cce	ssive	e mini	ma							

$$d = \underline{\hspace{1cm}} mm$$

Multiply the distance, d, by 2 to obtain the wavelength of the signal in the waveguide, λ_a .

$$\lambda_g = 2d = \underline{\hspace{1cm}} mm$$

Based on the obtained wavelength, λ_g , calculate the frequency of the signal in the waveguide, f, using the formula below.

$$f = c\sqrt{\left(\frac{1}{\lambda_g}\right)^2 + \left(\frac{1}{2a}\right)^2} \tag{10}$$

where

- f is the frequency of the signal in the waveguide (Hz).
- is the velocity of propagation of the signal in free space (3.0 · 108 m/s).
- λ_g is the wavelength of the signal in the waveguide (m).
- \vec{a} is the width of the waveguide, equal to 0.0229 m.

$$f =$$
 GHz

Standing wave produced along the Slotted Line when the waveguide is short-circuited

14. In LVDAM-MW, select the Data Table function and enter the column titles and figures already recorded in Table 6 below. Save your Data Table.

Table 6. $\it E/E_{\it Max.}$ ratios along the Slotted Line when the waveguide is short-circuited.

Distance from the load (mm)	SWR Meter reading (dB)	E/E _{Max} .
45	0	1
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68	-	
69		
70	.	
71		
72	-	
73		

15. Set the Gain on Input 3 to 0 dB.

Locate the Slotted Line's probe over the maximum nearest the load (around the 45.0 mm position) in order to obtain the maximum signal level on the SWR Meter.

Verify that the frequency of the SWR Meter is properly tuned for the Signal Level displayed on the SWR Meter to be maximal. Click on the REFERENCE button of the SWR Meter to set the reference level to 0.0 dB.

- **16.** Fill in your Data Table: by moving the Slotted Line's probe away from the load in steps of 1.0 mm, set this probe to each of the locations listed in the Data Table and, for each location, perform the steps below.
 - a) Record the SWR Meter power reading under the column "SWR METER READING" (increase or decrease Gain Input 3 as necessary, but do not change the Reference on the SWR Meter).
 - b) Using the SWR Meter reading recorded in step a., use the equation below to calculate the ratio $E/E_{Max.}$. Record your result under the column " $E/E_{Max.}$ ". Save your table.

$$\frac{E}{E_{Max}} = 10^{\frac{\text{SWR Meter reading (dB)}}{20}} = \text{antilog} \frac{\text{SWR Meter reading (dB)}}{20}$$
 (11)

where E is the voltage of the standing wave at the current probe location (V) is the voltage of the standing wave at the location of the maximum (V) is the ratio of the standing wave voltage, E, to the maximum voltage, E_{Max} of this wave, in decibels

17. In LVDAM, select the Graph function of the Data Table and plot the E/E_{Max} -versus-distance from the load curve: select "DISTANCE FROM THE LOAD" for the X-Axis and " E/E_{Max} ." for the Y-Axis.

Have the X-Axis coordinates of your graph graduated like the Slotted Line's ruler (right-to-left increase) by making the following settings in the Graph window:

X-Axis Coordinates	
Inversion	ON
Scale	
X-Axis Scale	Manual
X Interval	10
X Max	150
X Min	0

Your graph should show part of the standing-wave pattern, as Figure 42 shows. Print your graph, then plot the rest of the standing wave freehand based on the minima and the maxima recorded in Table 5.

Remember that a standing wave repeats itself every half-wavelength. The distance between the minima and maxima remains constant.

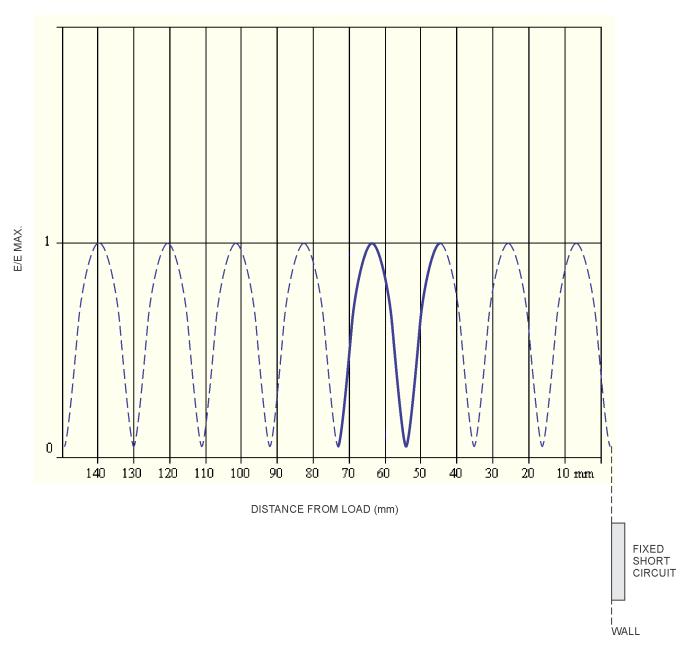


Figure 42. Standing wave produced along the Slotted Line when the waveguide is short-circuited.

18. Save and close your Data Table.

Standing wave produced along the Slotted Line when the load consists of a 6 dB attenuator and a short circuit

19. In the Settings panel of LVDAM-MW, set the Gunn Oscillator/VCO Power to OFF.

20. Taking care not to modify the adjustment of the Variable Attenuator and Slotted Line's probe depth, modify your microwave circuit in order to obtain the circuit shown in Figure 43.

Leave the rest of the equipment connected and set as before.

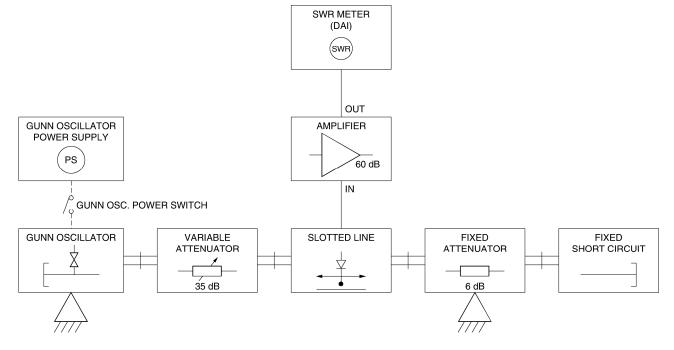


Figure 43. Modified microwave circuit to plot the standing-wave pattern when the load consists of a 6 dB attenuator and a short circuit.

21. In the Settings panel of LVDAM-MW, make the following settings:

Gunn Oscillator/VCO Power	. О	N
Input 3 Gain	. 0	dΒ

Wait for about 5 minutes to allow the modules to warm up.

22. Locate the Slotted Line's probe over the maximum nearest the load (around the 36.0 mm position) in order to obtain the maximum signal level on the SWR Meter.

Verify that the frequency of the SWR Meter is properly tuned for the Signal Level displayed on the SWR Meter to be maximal. Slightly move the Slotted Line's probe around the 36 mm position to locate the probe over the maximum (if not already there) and obtain the maximum Signal Level on the SWR Meter. If the maximum signal level is below 70% of full scale, very slightly readjust the attenuation provided by the Variable Attenuator or the depth of the Slotted Line's probe so that the maximum level is between 70 and 90% of full scale.

Click on the REFERENCE button of the SWR Meter to set the reference level to 0.0 dB.

23. Move the probe of the Slotted Line along the graduated waveguide to locate the minima and the maxima. Record the position of each of them in Table 7. Do not modify any equipment setting, except Gain Input 3 if necessary.

The magnitude of the minima and the maxima may slightly change as the probe is moved along the line due to power lost by reflection along the guide. Reflections and reflection losses will be studied in another exercise.

Table 7. Location of minima and maxima when the load consists of a 6 dB attenuator and a short circuit.

Minimum	Distance from the load (mm)	Maximum	Distance from the load (mm)
$m_{1 (nearest from load)}$		$M_{1 (nearest from load)}$	
m_2		M_2	
m_3		M_3	
m_4		M_4	
m_5	-	M_5	

24. In LVDAM-MW, select the Data Table function and enter the column titles and figures already recorded in Table 8 below. Save your Data Table.

Table 8. $E/E_{\it Max.}$ ratios along the Slotted Line when the load consists of a 6 dB attenuator and a short circuit.

Distance from the load (mm)	SWR Meter reading (dB)	E/E _{Max} .
36	0	1
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		

25. Locate the Slotted Line's probe over the maximum nearest the load (around the 36.0 mm position) in order to obtain the maximum signal level on the SWR Meter.

Verify that the frequency of the SWR Meter is properly tuned for the Signal Level displayed on the SWR Meter to be maximal. Click on the REFERENCE button of the SWR Meter to set the reference level to 0.0 dB.

- **26.** Fill in your Data Table: by moving the Slotted Line's probe away from the load in steps of 1.0 mm, set this probe to each of the locations listed in the Data Table and, for each location, perform the steps below.
 - Note the SWR Meter power reading and record it under the column "SWR METER READING".

When the SWR Meter's Signal Level fluctuates, approximate this level.

b) Using the SWR Meter reading recorded in step a., use the equation below to calculate the ratio E/E_{Max} . Record your result under the column " E/E_{Max} ." Save your table.

$$\frac{E}{E_{Max}} = 10^{\frac{\text{SWR Meter reading (dB)}}{20}} = \text{antilog} \frac{\text{SWR Meter reading (dB)}}{20}$$
 (12)

where

E is the voltage of the standing wave at the current

probe location (V)

 $E_{Max.}$ is the voltage of the standing wave at the location

of the maximum (V)

SWR Meter reading $\,$ is the ratio of the standing wave voltage, E, to the

maximum voltage, E_{Max} of this wave, in decibels

(dB).

27. In LVDAM, select the Graph function of the Data Table and plot the E/E_{Max} -versus-distance from the load curve.

Have the X-Axis coordinates of your graph graduated like the Slotted Line's ruler by making the following settings in the Graph window:

X-Axis Coordinates Inversion	ON
Scale	_
X-Axis Scale	Manual
X Interval	10
X Max	150
X Min	0

Your graph should show part of the standing-wave pattern, as Figure 44 shows. Observe that the peak-to-peak amplitude of the standing wave is lower than that of the standing wave previously obtained with the short-circuited load.

96

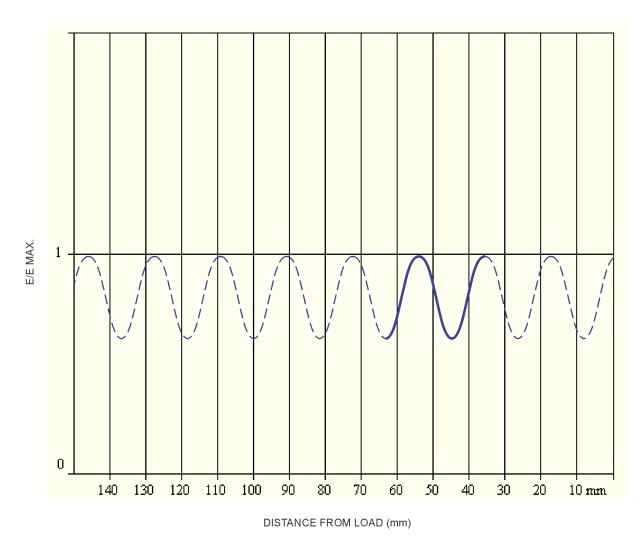


Figure 44. Standing wave produced along the Slotted Line when the load consists of a 6 dB attenuator and a short circuit.

Print your graph, then plot the rest of the standing wave freehand based on the minima and the maxima recorded in Table 7.

Remember that a standing wave repeats itself every half-wavelength. The distance between the minima and maxima remains constant.

28. Save and close your Data Table.

Standing wave produced along the Slotted Line with a matched load

29. In the Settings panel of LVDAM-MW, set the Gunn Oscillator/VCO Power to OFF.

30. Taking care not to modify the adjustment of the Variable Attenuator and Slotted Line's probe, modify your microwave circuit in order to obtain the circuit shown in Figure 45.

Leave the rest of the equipment connected and set as before.

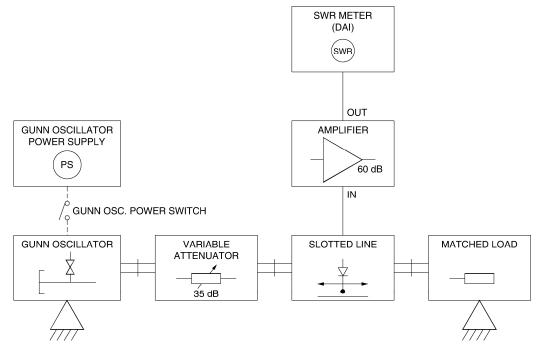


Figure 45. Modified microwave circuit to plot the standing-wave pattern with a matched load.

31. In the Settings panel of LVDAM-MW, make the following settings:

Gunn Oscillator/VCO Power	ON
Input 3 Gain	0 dB

32. In LVDAM-MW, select the Data Table function and enter the column titles and figures already recorded in Table 9 below. Save your Data Table.

Table 9. E/E_{Max} ratios along the Slotted Line with a matched load.

Probe location (mm)	SWR Meter reading (dB)	E/E _{Max.}
40	0	1
50		
60		
70		
80		
90		
100		
110		

33. Locate the Slotted Line's probe over the 40 mm position.

Verify that the frequency of the SWR Meter is properly tuned for the Signal Level displayed on the SWR Meter to be maximal. If this level is below 70% of full scale, very slightly readjust the attenuation provided by the Variable Attenuator or the depth of the Slotted Line's probe so that the maximum level is between 70 and 90% of full scale.

Click on the REFERENCE button of the SWR Meter to set the reference level to 0.0 dB.

- **34.** Fill in your Data Table: by moving the Slotted Line's probe away from the load, set this probe to each of the locations listed in the Data Table and, for each location, perform the steps below.
 - a) Note the SWR Meter power reading and record it under the column "SWR METER READING".

When the SWR Meter's Signal Level fluctuates, approximate this level.

b) Using the SWR Meter reading recorded in step a., use the equation below to calculate the ratio E/E_{Max} . Record your result under the column " E/E_{Max} ." Save your table.

$$\frac{E}{E_{Max.}} = 10^{\frac{\text{SWR Meter reading (dB)}}{20}} = \text{antilog} \frac{\text{SWR Meter reading (dB)}}{20}$$
 (13)

where

E is the voltage of the standing wave at the current probe location (V)

 E_{Max} is the voltage of the standing wave at the location

of the maximum (V)

SWR Meter reading is the ratio of the standing wave voltage, E, to the

maximum voltage, E_{Max} of this wave, in decibels

(dB)

35. In LVDAM, select the Graph function of the Data Table and plot the E/E_{Max} -versus-distance from the load curve.

Have the X-Axis coordinates of your graph graduated like the Slotted Line's ruler by making the following settings in the Graph window:

X-Axis Coordinates Inversion	ON
Scale	
X-Axis Scale	Manual
X Interval	10
X Max	150
X Min	0

Your graph should resemble that shown in Figure 46.

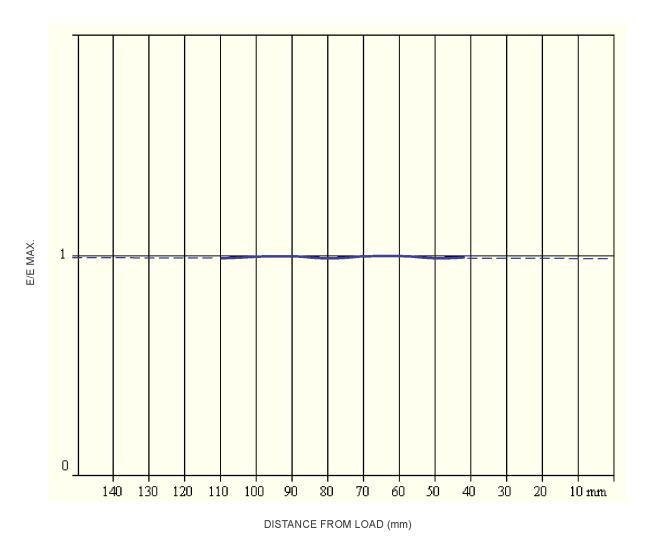


Figure 46. Standing wave produced along the Slotted Line with a matched load.

Observe that the amplitude of the standing wave stays nearly constant around a ratio $E/E_{Max.}$ of 1, since the impedance of the load is matched to the characteristic impedance of the waveguide.

- 36. Save and close your Data Table.
- **37.** Turn off the Gunn Oscillator Power Supply and the Data Acquisition Interface by setting their POWER switch to the O (OFF) position. Disassemble the setup and return all components to their storage location.
- 38. Close the LVDAM-MW software.

CONCLUSION

In this exercise, the concepts of characteristic impedance, reflected waves, and standing-waves were introduced. You became familiar with the use of a slotted line by evaluating the guided wavelength and the frequency of a microwave signal. You also determined the standing-wave patterns for a short circuit, an attenuator and short-circuit load, and a matched load.

	signal. You also determined the standing-wave patterns for a short cir attenuator and short-circuit load, and a matched load.			
REVIEW QUESTIONS	1.	What does a standing-wave pattern represent?		
	2.	What is the distance, in terms of wavelengths, between successive minima in a standing-wave pattern?		
	3.	What causes a maximum on a standing-wave?		
	4.	Explain how to determine a microwave signal's frequency with a slotted line.		
	5.	What physical parameter does a slotted line measure?		

Sample
Extracted from
Instructor Guide

Standing Waves

DISCUSSION OUTLINE

The Discussion of this exercise covers the following points:

- Introductory information
- Microwave frequency measurements and standing wave plotting with the Slotted Line and LVDAM-MW SWR Meter

Startup procedure when using the Slotted Line and the SWR Meter of LVDAM-MW.

- Instructional plan
- Demonstrations
- Presentation aids

DISCUSSION

Introductory information

Exercise 7 introduces standing waves. Standing waves are the result of two waves of the same frequency and amplitude travelling in opposite directions in a waveguide adding to and subtracting from each other. In waveguides, two waves travelling in opposite directions exist when an incident wave encounters a discontinuity, obstacle, or load and a reflected wave is produced. A standing wave can be defined for any component of the microwave field. Generally, the electric field component is considered.

When the two waves are of the same magnitude, the resulting wave is called a pure standing wave. This wave is stationary; that is, a constant-phase point does not move, but remains at the same point as time goes by. If one of the waves is smaller than the other, the resulting wave will not be stationary and the constant-phase point will move in the same direction as the larger wave. However, the envelope of the instantaneous curves will be stationary. This envelope is called a standing-wave pattern.

Normally, it is not the shape of the standing-wave pattern that is of interest; it is rather the ratio of the maximum to the minimum values of the pattern, called the standing-wave ratio (SWR), that is of interest. A maximum of a standing-wave pattern is the sum of the amplitudes of the two waves. A minimum is the difference between the amplitudes of the two waves.

A common cause of standing-wave patterns is the reflection of a portion of the propagating wave by a load in the microwave system. If the impedance of the load is not equal to the characteristic impedance of the system, some of the propagating wave will be reflected back towards the microwave source. The size of the reflected wave will depend on the mismatch between the load and the system. Obviously, if a part of the signal sent to the load is reflected, the load will not have absorbed all of the signal. From the SWR produced by the resulting standing-wave pattern, you can determine the fraction of the incident wave that has been reflected.

In the first part of the exercise, the students will use the Slotted Line and the SWR Meter of LVDAM-MW to measure the guided wavelength of a microwave signal. To do this, the students will first measure the distance between two successive minima near the load (in the short-circuited condition) and multiply this distance by two to obtain the wavelength. Based on this wavelength, the students will use a formula to calculate the frequency of the microwave signal.

The students will then use the Slotted Line and the SWR Meter to determine the standing-wave pattern produced by three different loads: a short circuit, an attenuator and short-circuit load, and a matched load. The students will record and save all the measurements made with the Slotted Line and the SWR Meter in the Data Table of LVDAM-MW; the Graph function of this software will automatically plot the standing-wave pattern corresponding to the results recorded in the Data Table.

Microwave frequency measurements and standing wave plotting with the Slotted Line and LVDAM-MW SWR Meter

The Slotted Line is used with the SWR Meter of LVDAM-MW to perform microwave frequency measurements and standing wave plotting.

To do this, the Slotted Line must be connected to the input of the Data Acquisition Interface (DAI) that is dedicated to the SWR Meter: MULTI-FUNCTION INPUT 3. This connection is usually made via the 60 dB Amplifier, Model 9593, to obtain the maximum dynamic range.

The SWR Meter is set to read power, in dB. Its power reading is directly related to the dc voltage at the Slotted Line output and, therefore, to the magnitude of the electric field in the waveguide.

When the carriage is moved along the waveguide, the position of the probe changes, causing the dc voltage produced by the Slotted Line's crystal detector to change as a function of the variation in magnitude of the electric field along the waveguide.

Two positioning scales on the waveguide and the carriage indicate the location of the carriage. This allows the students to locate the minima and the maxima in the standing wave produced by various loads, and to measure the wavelength and the frequency of the microwave signal in the waveguide.

The measurements made with the Slotted Line are limited by the scale graduations.

Startup procedure when using the Slotted Line and the SWR Meter of LVDAM-MW

For detailed information on this startup procedure, please refer to Section 3 of the User Guide Microwave Data Acquisition and Management, part number 85756-E.

Before using the Slotted Line and the SWR Meter, the following startup procedure must be performed. This procedure allows students to obtain the maximum dynamic range on the SWR Meter, while operating the crystal detector of the Slotted Line in its square-law region to obtain valid SWR Meter readings.

- The microwave signal injected into the circuit is amplitude modulated by a 1 kHz square wave, provided by the Gunn Oscillator Power Supply. The microwave signal is then attenuated in order for the crystal detector of the Slotted Line to operate in its square-law region and the SWR Meter to provide valid readings.
- The Slotted Line's probe is located over the standing-wave maximum nearest the load in order for the Slotted Line output voltage to be maximum. This voltage is applied to MULTI-FUNCTION INPUT 3 (input dedicated to the SWR Meter of LVDAM-MW).
- 3. The depth of the Slotted Line's probe is set to the initial default position of 1/3 of maximum.
- 4. With the minimum sensitivity (0 dB gain) on MULTI-FUNCTION INPUT 3, the frequency of the SWR Meter's amplifier is tuned to obtain the maximum signal level on the SWR Meter.
- 5. The Slotted Line's probe depth is then adjusted so that the maximum signal level indicated by the SWR Meter is between 70 and 90% of full scale.
- 6. The Slotted Line's probe is accurately positioned over the maximum, and the probe depth is fine-tuned, if necessary, to obtain the maximum signal level on the SWR Meter.
- 7. Finally, the reference level (0.0 dB) is set on the SWR Meter. All subsequent SWR Meter readings will be the ratio, in decibels (dB), of the measured power to the reference level of 0.0 dB (relative power level).

Particular attention must be paid to the adjustment of the probe depth inside the Slotted Line. If the probe penetrates too deep into the Slotted Line, the field distribution can be distorted, especially when the SWR is high. Moreover, the probe's crystal detector is then more likely to operate outside of its square-law region, causing the measurements to be erroneous.

To obtain a good accuracy of measurement, the tuning of the amplifier frequency of the SWR Meter must be readjusted whenever the microwave circuit is modified or used for a prolonged period of time, as the central frequency drifts over time. The drift in the central frequency of the SWR Meter's amplifier is due, among other things, to variations in ambient temperature and equipment temperature.

Similarly, the SWR Meter's reference may vary slightly over time. Small drifts are acceptable. However, it is recommended that you verify the reference from time to time and readjust it to 0.0 dB, to maintain a good accuracy of measurement.

Instructional plan

- A. Explain how standing-wave patterns are formed from two waves travelling in opposite directions:
 - 1. Waves of the same frequency and amplitude (produce a pure standing wave).

- 2. Waves of the same frequency, but different amplitude (produce a standing-wave pattern).
- B. Describe a standing-wave pattern showing the minima and maxima. Emphasize the fact that the distance between successive minima or maxima is equal to half the guided wavelength of the microwave signal.
- C. Briefly explain that the size of the reflected wave depends on the mismatch between the characteristic impedance of the waveguide system and the impedance of the load.
- D. Briefly explain the standing-wave ratio. (More will be said about the SWR in Exercise 10):

$$SWR = \frac{E_{Maximum}}{E_{Minimum}}$$

- E. Familiarize the students with the Slotted Line.
- F. Explain how to use the SWR Meter of LVDAM-MW to perform measurements with the Slotted Line, and the startup procedure to perform.
- G. Explain how the Slotted Line and the SWR Meter are used to determine the guided wavelength of the microwave signal:
 - 1. Measure the distance between successive minima. Also explain why minima are used rather than maxima.

2.

$$f = c\sqrt{\left(\frac{1}{\lambda_g}\right)^2 + \left(\frac{1}{2a}\right)^2} \tag{4}$$

where

- *f* is the frequency of the signal in the waveguide (Hz).
- c is the velocity of propagation of the signal in free space (3.0 x 108 m/s)
- λ_a is the wavelength of the signal in the waveguide (m).
- \vec{a} is the width of the waveguide, equal to 0.0229 m.

Demonstrations

- Show why minima of the standing-wave pattern are used to determine
 the wavelength of a signal in the guide. You could use a sketch of a
 standing-wave pattern and a set-up with a Slotted Line and a Fixed Short
 Circuit. Show that the precise location of a minimum is much easier to
 determine than that of a maximum.
- By changing loads, show that, although the standing-wave pattern may shift and its amplitude may vary, the distance between minima and maxima remains constant.

Presentation aids

- 1. Use diagrams to show how a standing-wave pattern is formed. Many textbooks have diagrams that might prove helpful.
- 2. Use the explanations given above to explain how to use the SWR Meter with the Slotted Line and how to perform the startup procedure. The User Guide (part number 85756-E) gives the detailed startup procedure.

Bibliography

BADENFULLER, A.J., Microwaves: An Introduction to Microwave Theory and Techniques, 2nd Edition, Oxford, U.K., Pergammon Press, 1979. ISBN 0-08-024297-8

CHEUNG, W.S., LEVIEW, F.H., Microwave Made Simple. Principles and Applications, Dadham, Mass (U.S.A.), Artech House Inc., 1985. ISBN 0-89006-173-4

CROSS, A.W., Experimental Microwave, Stevenage, U.K., Marconi Instruments Ltd., 1977.

GANDHI, O.P., Microwave Engineering and Applications, Elsmsford, New York, Pergamon Press Inc., 1981. ISBN 0-08-025588-4

GARDIOL, F., Hyperfréquences, Paris, France, Dunod, 1987. ISBN 2-04-016953-9

GRIVET, P., Physique des Lignes de Haute Fréquence et d'Ultra-Haute Fréquence, Paris, France, Masson et Cie, 1969.

GUPTA, K.C., Microwaves, New Delhi, India, Wiley Eastern Ltd., 1979. ISBN 0-85226-346-5

JOUQUET, M., Ondes Électromagnétiques – Vol. 2: Propagation Guidée, Paris, France, Bordas-Dunod, 1973. ISBN 2-04-010141-1

KENNEDY, G., Electric Communication Systems, 3rd Ed., New York, N.Y. (U.S.A.), McGraw Hill Book Co., 1985. ISBN 0-070-34054-4

LAVERGHETTA, T.S., Handbook of Microwave Testing, Dadham, Mass (U.S.A.), Artech House Inc., 1981. ISBN 0-89006-070-3

LIAO, S.Y., Microwave Devices and Circuits, Englewood Cliffs, New Jersey (U.S.A.), Prentice Hall Inc., 1980. ISBN 0-13-581297-0

VASSALLO, C., Théorie des Guides d'Ondes Électromagnétiques – Tome 1 et Tome 2, Paris, France, Éditions Eyrolles, 1985.